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PURE POINT DIFFRACTION AND POISSON SUMMATION

CHRISTOPH RICHARD AND NICOLAE STRUNGARU

Abstract. We prove that the diffraction formula for regular model sets is

equivalent to the Poisson Summation Formula for the underlying lattice. This

is achieved using Fourier analysis of unbounded measures on locally compact

abelian groups as developed by Argabright and de Lamadrid. We also obtain

diffraction results for certain classes of non-regular so-called weak model sets.

1. Introduction

Research triggered by the experimental discovery of quasicrystals, see [2] for

a recent mathematical monograph, provided examples of non-periodic structures

with long-range order. Their diffraction spectrum consists of Bragg peaks only. A

mathematical abstraction of these examples are so-called regular model sets, which

are certain projections of a subset of a higher-dimensional lattice. In fact, model

sets have been introduced and intensively studied before the discovery of quasicrys-

tals by Meyer [23, 24], and they have later been re-investigated and advocated by

Moody, see e.g. [26].

A central result in mathematical diffraction theory states that regular model

sets have a pure point diffraction spectrum. This has been proved in the Euclidean

setting by Hof [15] using the underlying lattice Poisson Summation Formula (PSF),

see also [2, Lemma 9.3]. When it became clear that examples with a non-Euclidean

embedding space exist such as limit-periodic model sets [5], their diffraction has

been studied in general σ-compact locally compact abelian (LCA) groups. However

the corresponding proofs did not rely on the PSF but instead used dynamical

systems, see Schlottmann [33] for so-called repetitive regular model sets and [18]

for recent results in that direction. A complementary approach uses almost periodic

measures, see e.g. Solomyak [34], Baake–Moody [4] and the recent work [35]. These

results have also been extended to weighted Dirac combs with weight functions

on the embedding space of sufficiently fast decay, which are called admissible in

[30, 19].

In this article, we will reprove the diffraction formula for regular model sets

on general σ-compact LCA groups using the PSF of the underlying lattice. In

fact we show that the lattice PSF and the diffraction formula for regular model

sets can be derived from one another. We also show that the diffraction formula

of regular model sets and the diffraction formula of the underying lattice can be

derived from one another. Our proofs shed some new light on the Euclidean case.

One interpretion of our results is that the lattice PSF induces a generalised PSF

for the model set and vice versa. This clarifies an opinion sometimes expressed
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by experimental physicists that diffraction properties of quasicrystals should be

deducible from those of the underlying lattice.

Working beyond Euclidean space, we cannot use Hof’s tempered distribution ap-

proach, but rely instead on Fourier theory of unbounded measures as in Argabright

and de Lamadrid [1, 6]. Whereas working with measures only seems a severe restric-

tion, this is in fact natural as diffraction may be described by a measure. Indeed,

the diffraction measure of the infinite idealisation of a finite specimen decomposes

into a discrete and a continuous part, which correspond to the Bragg peaks and to

the continuous component in the diffraction picture.

We will extend elements of Hof’s proof to the non-Euclidean setting. Hof used

a certain uniform distribution result for regular model sets in his arguments. We

will show that uniform distribution also follows from the underlying lattice PSF.

In the Euclidean setting, this has already been argued by Meyer [23], see also [24,

Sec. V.7.3], [22, Prop. 5.1]. Other proofs of uniform distribution in the general

setting are based on geometric [32] or dynamical systems arguments [25]. Our

approach indicates that problems equivalent to the PSF such as function recon-

struction via sampling [8] may also be successfully analysed for model sets in the

abstract setting. It may further be a starting point for extending cut-and-project

schemes beyond the abelian case, such as to cover the affine group of Euclidean

space.

Let us describe the structure of this article. After reviewing mathematical diffrac-

tion theory, we recall the Fourier analysis of unbounded measures in Section 3. Here

we are particularly interested in generalised PSF for measures which extend the lat-

tice case and in double transformability. In Section 4 we consider weighted model

sets and discuss their Fourier analysis. We prove that, for certain weight functions,

their generalized PSF is equivalent to the PSF of the underlying lattice, and we

show uniform distribution using the lattice PSF. In Section 5, we will use the so-

called autocorrelation measure to study the diffraction of regular model sets. We

show that the diffraction formula for regular model sets can be obtained by combin-

ing the generalized PSF and the density formula. Thus the diffraction formula can

be obtained by a double application of the PSF for the underlying lattice. We also

show that the lattice PSF follows from the diffraction formula for regular model

sets. We close with some remarks on pure point diffraction for non-regular model

sets and Meyer sets, and by proving double transformability of translation bounded

transformable measures with Meyer set support.

2. Elements of diffraction theory

We give a focussed introduction to diffraction theory, see [12, 9] for physical

background and [2, Section 9.1.2] for mathematical background in the Euclidean

case. Diffraction of X-rays by matter results from scattering by the individual

atoms and interference between the scattering waves. For a finite sample with

atom position set Λ ⊂ R3, one defines the structure factor F (s) = ∑p∈Λ fpe
−2π 9ıs⋅p,

where the so-called scattering factor fp is a complex weight associated with an

atom at p. Assume that the incident beam is a plane wave with wave vector k0,

and assume that one measures diffraction at a distance r very large in comparison

to the sample size. Then the observed intensity I(r) of diffraction at distance r is
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approximately given by

I(r) =
A

∣r∣2
∣F (k − k0)∣2,

where k = ∣k0∣ ⋅ r/∣r∣, and A is some positive normalisation constant.

For a measure-theoretic description, assume that Λ ⊂ R
d is uniformly discrete

and consider the Dirac comb ω = δΛ = ∑p∈Λ δp of Λ. We assume for simplicity that

all atoms have equal scattering factors fp = 1. We want to infer the diffraction of ω

from finite samples ωn = ω∣Bn
, where we restrict to balls Bn of radius n. Diffraction

of the finite measure ωn can be rephrased using a so-called Wiener diagram

ωn
∗ÐÐÐÐ→ ωn ∗ ω̃n

F
×××Ö

×××Ö
F

ω̂n
∣⋅∣2ÐÐÐÐ→ ω̂n ⋅ ω̂n

Here F denotes the Fourier transform, ∗ denotes convolution, and the reflected

measure ω̃ is defined via ω̃(f) = ω(f̃) with f̃(x) = f(−x). The Wiener diagram

commutes due to the convolution theorem of Fourier analysis. Hence the diffraction

of ωn may alternatively be computed as the Fourier transform of the so-called

autocorrelation measure γn = ωn ∗ ω̃n. Note that the diffraction measure allows

reconstruction of the autocorrelation γn but not of ωn.

For ω unbounded instead of ωn, the Wiener diagram has no direct measure-

theoretic interpretation. As convolution is defined only if one measure is bounded,

an autocorrelation γ of ω may however be interpreted as a vague limit of the finite

autocorrelation measures, i.e.,

γ = ω ⊛ ω̃ ∶= lim
n→∞

1

θ(Bn)
ωn ∗ ω̃n,

if this limit exists. Here θ denotes the Lebesgue measure. Such a limit exists at

least on some subsequence of (Bn)n∈N if the set Λ − Λ of interatomic distances is

uniformly discrete. The measure γ is also called the Eberlein convolution of ω,

see e.g. [2]. It is a positive definite measure by construction. Secondly, a Fourier

transform of ω may make sense via tempered distributions but not as a measure

if ω is non-periodic. Indeed, if ω̂ is supported on a uniformly discrete set, then ω

must be supported on a finite union of lattice translates [21].

However for ω = δΛ a lattice Dirac comb, one has γ = dens(Λ) ⋅ ω. The Fourier

transform of ω is the measure ω̂ = dens(Λ) ⋅ δΛ0
, where Λ0 is the lattice dual to

Λ. Hence the modified Wiener diagram commutes in that situation. Note that the

measure equation ω̂ = dens(Λ) ⋅ δΛ0
is a version of the classical PSF.

More generally, if ω is not Fourier transformable as a measure, it is still possible

to analyse diffraction from a measure theoretic viewpoint if an autocorrelation γ of

ω exists as a measure. This will be true in all examples below. In that situation,

γ will be transformable due to positive definiteness, and its Fourier transform γ̂

will be a positive measure. One can then infer diffraction properties of Λ from

the Lebesgue decomposition of γ̂. The discrete part describes the Bragg peaks,

and the continuous part describes the diffuse background in the diffraction picture.

Moreover, diffraction of Λ can indeed be inferred from finite samples as the Fourier

transform is continuous, see [6, Thm. 4.16] and [27, Lemma 1.26]. From a physical

viewpoint, this justifies why one may approximate a large finite sample by its infinite

idealisation.
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Our main result Theorem 5.2 states that Dirac combs of regular model sets,

which includes lattice Dirac combs, are pure point diffractive. In that case, their

diffraction amplitudes are computed as in the finite measure case by “squaring the

Fourier-Bohr coefficients”. Moreover a modified Wiener diagram holds for a large

class of weighted model sets including lattice Dirac combs, see Remark 5.4.

3. Fourier transformability

Let us fix our notation. G stands for an arbitrary LCA group. A Haar measure on

G will be denoted by θG. We denote by Cc(G) the space of continuous, compactly

supported functions on G, and by CU(G) the space of uniformly continuous and

bounded functions onG. For f ∈ L1(G) we denote its Fourier transform by f̂ and its

inverse Fourier transform by qf . Let Ĝ denote the Pontryagin dual of G. Given any

LCA group G with Haar measure θG, we always choose the Plancherel measure θĜ
on the dual group Ĝ, i.e., the Haar measure such that the Plancherel theorem [10,

Thm. 3.4.8] holds. Let M(G) denote the set of complex regular Radon measures

on G. A measure µ ∈M(G) is translation bounded if sup{∣µ∣(t +K) ∣ t ∈ G} < ∞
for every compact K ⊂ G, where ∣µ∣ ∈ M(G) is the variation measure of µ. Let

M∞(G) ⊂ M(G) denote the set of translation bounded complex regular Radon

measures on G. If for some 1 ≤ p ≤∞ a function f ∶ G→ C satisfies f ∈ Lp(∣µ∣), we
write f ∈ Lp(µ) for convenience.

3.1. Poisson Summation Formula for a lattice. Let L be a lattice in G, i.e.,

a discrete, co-compact subgroup of G, and consider the lattice Dirac comb µ = δL.
The Dirac comb δL is a translation bounded positive measure. Normalise the Haar

measure on G/L such that the Weil formula [29, Eqn. (3.3.10)] holds. Let us denote

by L0 ⊂ Ĝ the annihilator of L in Ĝ, i.e.,

L0 = {χ ∈ Ĝ ∶ χ(x) = 1 for all x ∈ L}.

By Pontryagin duality, the annihilator L0 ≅ Ĝ/L of L is a lattice in Ĝ. It is called

the lattice dual to L. Its Dirac comb δL0
is a translation bounded positive measure.

As Haar measure on L we choose the counting measure θL = δL, and on L0 we choose

the Plancherel measure θL0
with respect to G/L. It is given by θL0

= dens(L) ⋅ δL0
.

Consider KL(G) ∶= {f ∈ Cc(G) ∶ f̂ ∈ L1(Ĝ)}. The following result is well known,

see e.g. [29, Thm. 5.5.2] and [10, Thm. 3.6.3].

Theorem 3.1 (lattice PSF). Let L ⊂ G be a lattice in G, and let L0 ⊂ Ĝ be its dual

lattice. Then the Poisson summation formula

⟨δL, f⟩ = dens(L) ⋅ ⟨δL0
, qf⟩

holds for all f ∈KL(G). �

Remark 3.2. In fact the lattice PSF also holds for sufficiently decaying f of un-

bounded support, but we will not consider such functions in this manuscript. One

may regard the measure dens(L) ⋅ δL0 as the Fourier transform of the measure

δL. Note that as a consequence of the lattice PSF, f ∈ KL(G) has a lattice inte-

grable Fourier transform, i.e., f̂ ∣L0
∈ L1(L0). These two observations motivate the

definition of the Fourier transform of a measure in the following section, see also

Proposition 3.9 (ii).
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3.2. Fourier transforms as measures. As usual, convolution is for f, g ∈ L1(G)
defined by f ∗g(x) = ∫ f(y)g(x−y)dθG(y). We have f ∗g = g∗f since G is unimod-

ular. We also use f̃(x) = f(−x), which defines a unitary representation of G on the

Hilbert space L2(G). Hence f ∈ L2(G) satisfies f ∗ f̃ ∈ P (G), where P (G) denotes
the set of continuous positive definite functions on G, see [13] for background. This

implies that f ∗ f̃ is Fourier transformable by Bochner’s theorem [29, Thm. 4.4.19],

and we have f̂ ∗ f̃ = ∣f̂ ∣2. We recall the definition of transformability of a measure

[1, Sec. 2].

Definition 3.3 (Fourier transform). A measure µ ∈ M(G) is transformable if

there exists a measure µ̂ ∈M(Ĝ) such that for all f ∈ Cc(G) we have qf ∈ L2(µ̂)
and

⟨µ, f ∗ f̃⟩ = ⟨µ̂, ∣ qf ∣2⟩ .
In this case, µ̂ is called the Fourier transform of µ.

Remark 3.4. In the Euclidean setting, the Fourier transform is often considered

as an appropriate tempered distribution. Here the Fourier transform µ̂ is even

required to be a measure. Such µ̂ is uniquely determined if it exists [1, Thm. 2.1].

Moreover µ̂ is then translation bounded [1, Thm. 2.5].

Remark 3.5. The above definition generalises the Fourier transform of functions.

Indeed, examples of transformable measures are given by µ = f ⋅θG, where f ∈ P (G)
or f ∈ Lp(G) for 1 ≤ p ≤ 2, see [1, Thm. 2.2]. Every finite measure is transformable.

A measure µ ∈M(G) is called positive definite if ∫G f ∗ f̃(x)dµ(x) ≥ 0 for every

f ∈ Cc(G). As a consequence of Bochner’s theorem, every positive definite measure

is transformable [1, Thm. 4.1]. Any Haar measure on a closed subgroup of G is, as

a measure on G, positive definite and hence transformable [1, Prop. 6.2, Cor. 6.2].

For the Haar measure on a closed subgroup of G, the definition of Fourier transform

reduces to a version of the classical PSF, compare Section 3.1 and Proposition 3.9.

Thus, transformability expresses that the measure satisfies some generalised PSF.

3.3. Spaces of test functions. We discuss transformability in terms of test func-

tions in particular subclasses of Cc(G). The above definition uses the function

space

K2(G) = span{f ∗ f̃ ∶ f ∈ Cc(G)}.
Note that f ∗ g ∈ K2(G) for f, g ∈ Cc(G), which follows from polarisation. The

space K2(G) is dense in Cc(G), which may be seen by approximating f ∈ Cc(G)
by convolution with a Dirac net and by polarisation, see p. 9 and Eq. (4.6) in [1]

for the argument.

We are interested in L1-characterisations of transformability. Note that if µ ∈
M(G) is transformable, then for f ∈ Cc(G) such that f̂ ∈ L1(Ĝ) we even have

f̂ ∈ L1(µ̂), see [1, Prop. 3.1]. Thus the space of functions

KL(G) = {f ∈ Cc(G) ∶ f̂ ∈ L1(Ĝ)}
is important. As Cc(G) ⊂ L1(G), every f ∈ KL(G) satisfies the inversion formula

f = q̂
f , see [10, Thm. 3.5.8]. Often, positive definiteness will be important for our

arguments. For this reason, we will sometimes deal with the function space

PK(G) ∶= span{P (G)∩KL(G)}.
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The requirement f̂ ∈ L1(Ĝ) is actually not needed in the definition of PK(G).
Lemma 3.6. f ∈ P (G)∩Cc(G) implies f̂ ∈ L1(Ĝ). Hence PK(G) = span{P (G)∩
Cc(G)}.
Proof. Let f ∈ Cc(G) be positive definite. Since f is continuous and positive def-

inite, by Bochner’s theorem, see e.g. [31, Sec. 1.4.3], there exists a finite measure

σ ∈M(Ĝ) such that

f(x) = ∫
Ĝ
χ(x)dσ(χ) .

Then, by [1, Thm. 2.2], [27, Lemma 1.17], the measure f ⋅θG is transformable and its

Fourier transform is σ. Again by [1, Thm. 2.2] or [27, Lemma 1.16], as f ∈ L1(G),
the measure f ⋅ θG is transformable and its Fourier transform is f̂ ⋅ θĜ. Therefore,

the uniqueness of the Fourier transform [1, Thm. 2.1] or [27, Thm. 1.13] yields

σ = f̂ ⋅ θĜ. As σ is a finite measure, it follows that f̂ ⋅ θĜ is a finite measure, and

hence f̂ ∈ L1(Ĝ). �

We thus have the following relationship among our spaces:

K2(G) ⊂ PK(G) ⊂KL(G) ⊂ Cc(G) .
As K2(G) is dense in Cc(G), it follows that PK(G) and KL(G) are also dense

in Cc(G). Many examples of functions in PK(G) are provided by the following

lemma.

Lemma 3.7. If f, g ∈ L2(G) have compact support, then f ∗ g ∈ PK(G).
Proof. By polarisation, it suffices to prove the result in the case g = f̃ . By [31,

Thm. on page 4, (d)] or [10, Lemma 3.4.1] we have f ∗ f̃ ∈ C0(G). Moreover, as f

has compact support, so has f ∗ f̃ . This shows that f ∗ f̃ ∈ Cc(G). By construction

f ∗ f̃ is positive definite, which completes the claim. �

Remark 3.8. For later use we note 1W ∗ 1̃W ∈ PK(G) ⊂ KL(G) for relatively

compact measurable W ⊂ G.

We have the following characterisation of transformability by generalised PSF.

For the Haar measure on a closed subgroup of G, part (ii) of the theorem is the

classical PSF as in [29, Thm. 5.5.2].

Proposition 3.9. For µ ∈M(G) and ν ∈M(Ĝ) the following are equivalent:

(i) µ is transformable and µ̂ = ν.
(ii) For every f ∈KL(G) we have qf ∈ L1(ν) and ⟨µ, f⟩ = ⟨ν, qf⟩.
(iii) For every f ∈ PK(G) we have qf ∈ L1(ν) and ⟨µ, f⟩ = ⟨ν, qf⟩.
(iv) For every f ∈K2(G) we have qf ∈ L1(ν) and ⟨µ, f⟩ = ⟨ν, qf⟩.

Proof. (i) ⇒ (ii) follows with [1, Prop. 3.1]. (ii) ⇒ (iii) ⇒ (iv) holds since K2(G) ⊂
PK(G) ⊂KL(G). (iv) ⇒ (i) holds trivially. �

3.4. Double transformability. For f ∈ L1(G) define f † ∈ L1(G) by f †(x) =
f(−x). Similarly, for µ ∈ M(G) define µ† ∈ M(G) via ⟨µ†, f⟩ = ⟨µ, f †⟩ for all

f ∈ Cc(G). If µ ∈M(G) and µ̂ ∈M(Ĝ) are both transformable, then the inversion

theorem ̂̂µ = µ† holds, and any of the measures µ,µ† and µ̂ is translation bounded

[1, Thm. 3.4]. This generalises the inversion theorem for integrable functions, see
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e.g. [10, Thm. 3.5.8]. We characterise when a transformable measure is twice trans-

formable.

Theorem 3.10. Let µ ∈M(G) be transformable. Then the following are equivalent.

(i) µ̂ ∈M(Ĝ) is transformable.

(ii) For every g ∈K2(Ĝ) we have qg ∈ L1(µ†).
If any of the above conditions holds, then ̂̂µ = µ†, and the measures µ,µ† and µ̂ are

translation bounded.

Proof. (i) ⇒ (ii) Since both µ ∈M(G) and µ̂ ∈M(Ĝ) are transformable, we havê̂µ = µ† ∈M(G). Now the claim follows from Proposition 3.9.

(ii) ⇒ (i) Consider any g ∈K2(Ĝ). Since by assumption ĝ ⋅µ is a finite measure,

its Fourier transform as a measure is the absolutely continuous measure with density

function

I(χ) ∶= ∫
G
χ(s)ĝ(s)dµ(s) .

Thus, for all f ∈ K2(G) we have ⟨ĝ ⋅ µ, f⟩ = ⟨I ⋅ θĜ, qf⟩. We also have f ⋅ ĝ ∈ Cc(G)
and }f ⋅ ĝ = qf ∗ g ∈ L1(Ĝ). Therefore, as µ is transformable we get

⟨µ, f ⋅ ĝ⟩ = ⟨µ̂, qf ∗ g⟩ = ⟨(g† ∗ µ̂) ⋅ θĜ, qf⟩.
Combining these we obtain

⟨I ⋅ θĜ, qf⟩ = ⟨ĝ ⋅ µ, f⟩ = ⟨(g† ∗ µ̂) ⋅ θĜ, qf⟩.
This proves the measure equality I ⋅ θĜ = (g† ∗ µ̂) ⋅ θĜ. As I and g ∗ µ̂ are both

continuous functions, they must be equal, and by evaluating at 0 we get ⟨µ, ĝ⟩ =
⟨µ̂, g⟩. Therefore, for all g ∈ K2(Ĝ) we have qg ∈ L1(µ†) and ⟨µ̂, g⟩ = ⟨µ†,qg⟩. As

µ† ∈M(G), the claim now follows from Proposition 3.9. �

Remark 3.11. Reinspecting the above proof, we can formulate the following result.

Let µ ∈M(G) be transformable. If there exists some ν ∈M(Ĝ) such that ∣µ∣ ≤ ∣ν̂ ∣,
then µ is twice transformable.

3.5. Fourier-Bohr coefficients. For a σ-compact LCA group G and a trans-

formable translation bounded measure µ, the discrete part of µ̂ can be computed

by a certain averaging procedure. To define suitable averaging sequences, consider

for U,W ⊂ G the (generalised) van Hove boundary

B
UW = ((U + cl(W )) ∩ cl(W c)) ∪ ((U + cl(W c)) ∩ cl(W )),

which was introduced in [33, Eqn. (1.1)], see also [28, Sec. 2.2] for a discussion. As

BW = B
{e}W ⊂ B

UW for U any unit neighbourhood, the van Hove boundary may be

considered as a thickened topological boundary in that case. A (generalised) van

Hove sequence is a sequence (An)n∈N of compact sets in G of positive (and finite)

Haar measure, 0 < θ(An) <∞, such that for all compact K ⊂ G we have

(3.1) lim
n→∞

θ(BKAn)
θ(An) = 0.

Existence of van Hove sequences in G is discussed in [33]. In Euclidean space, any

sequence of non-empty closed rectangular boxes of diverging inradius is a van Hove

sequence. Also any sequence of non-empty closed balls of diverging radius is a van

Hove sequence.
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Proposition 3.12 (Fourier-Bohr coefficients). For a σ-compact LCA group G, let

µ ∈M∞(G) be transformable and consider χ ∈ Ĝ. Let (An)n∈N be any van Hove

sequence in G. Then for every t ∈ G we have

µ̂({χ}) = lim
n→∞

1

θ(An) ∫t+An

χ(x)dµ(x).
The convergence is uniform in t ∈ G.

Remark 3.13. The above average is sometimes called the Fourier-Bohr coefficient

of µ at χ, compare [7, Def. 2.1] or [17, Eq. 8.14]. The proposition extends Hof’s

result [15, Thm. 3.2] to the non-Euclidean setting. The proposition also gener-

alises a result of Lenz [20, Cor. 5], which has been derived for positive definite

measures using dynamical systems. The proposition can partly be deduced from

[17, Thm. 11.3] when transformability of µ̂ is granted. A statement about uniform

convergence appears, in the Euclidean setting, in [7, Lemma 2.4]. A short proof

based on almost periodicity may be given as in [27, Thm. 1.19].

Our proof is an adaption of Hof’s arguments based on the PSF. Hence the

statement is a rather direct consequence of transformability. Let us first recall a

fundamental property of characters.

Lemma 3.14. Consider any σ-compact LCA group G and let χ ∈ Ĝ. Then for

every van Hove sequence (An)n∈N in G we have

lim
n→∞

1

θ(An) ∫An

χ(x)dθ(x) = δχ,e.
Proof. The conclusion of the lemma clearly holds for χ = e. Consider any character

χ ≠ e and fix any y ∈ G such that χ(y) ≠ 1. By left invariance of the Haar measure

on G and χ(yx) = χ(y)χ(x) we have

∫
An

χ(x)dθ(x) = ∫
G
1An
(yx)χ(yx)dθ(x) = χ(y)∫

−y+An

χ(x)dθ(x).
Due to the van Hove property of (An)n∈N, we have

∣∫
−y+An

χ(x)dθ(x) − ∫
An

χ(x)dθ(x)∣ ≤ θ((−y +An)∆An) ≤ θ(B{−y}An),
which is o(θ(An)) as n →∞ since (An)n is a van Hove sequence. Combining the

above properties yields

∣1 − χ(y)∣ ⋅ ∣ 1

θ(An) ∫An

χ(x)dθ(x)∣ = o(1)
as n→∞. Since χ(y) ≠ 1, the statement of the lemma follows. �

Proof of Proposition 3.12. We prove the proposition for χ = e. The general case

then follows from µ̂({χ}) = (δχ−1 ∗ µ̂)({e}) and (δχ−1 ∗ µ̂) = χ̂µ. We give an approx-

imation argument using sufficiently smooth compactly supported functions.

Define ϕ = ψ ∗ ψ̃ ∈ Cc(G) for some ψ ∈ Cc(G) such that ∫ ψ dθ = 1. Then also

∫ ϕdθ = 1. Fix any van Hove sequence (An)n∈N in G and define

f tn(x) ∶= 1

θ(An)1t+An
(x) .
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We will also denote (f tn)ϕ ∶= ϕ ∗ f tn. Then (f tn)ϕ ∈ KL(G) by Lemma 3.7, and

Proposition 3.9 (ii) yields (f tn)ϕ ∈ L1(µ̂) and
(3.2) ⟨µ, (f tn)ϕ⟩ = ⟨µ̂, (f tn)ϕ⟩ .
We will identify the limit in the statement of the proposition from the rhs. The lhs

will yield uniform convergence. Let us start with the rhs. We first note (f tn)ϕ(χ) →
δχ,e. Indeed, (f tn)ϕ(e) = qϕ(e) ⋅|f tn(e) = 1 since ϕ is normalised. Furthermore for

χ ≠ e we have

∣(f tn)ϕ(χ)∣ = ∣qϕ(χ)∣ ⋅ ∣ qf tn(χ)∣ ≤ ∣∣ϕ∣∣1 ⋅ ∣|f tn(χ)∣ → 0

by Lemma 3.14, as (t + An)n∈N is a van Hove sequence. Since ϕ ∈ KL(G) by

Lemma 3.7, we have qϕ ∈ L1(µ̂) by [1, Prop. 3.1]. In fact qϕ is an integrable majorant

of (f tn)ϕ as

∣(f tn)ϕ∣ = ∣qϕ∣ ⋅ ∣|f tn∣ ≤ ∣qϕ∣ ⋅ ∣∣f tn∣∣1 = ∣qϕ∣.
We can thus apply Lebesgue’s dominated convergence theorem to obtain

lim
n→∞
⟨µ̂, (f tn)ϕ⟩ = ⟨µ̂, δχ,e⟩ = µ̂({e}).

Now consider the limit n →∞ on the lhs of (3.2). Since f tn is proportional to the

characteristic function of t+An, by a standard tedious computation which we omit,

we have that f tn(x) ≠ (f tn)ϕ(x) implies x ∈ t + B
KAn, where K = supp(ϕ). Hence

we have for all n the estimate

∣⟨µ, f tn⟩ − ⟨µ, (f tn)ϕ⟩∣ ≤ ∣∣1 −ϕ∣∣∞ ⋅ ∣µ∣(t + BKAn)
θ(An) .

The rhs vanishes as n →∞ uniformly in t ∈ G, by translation boundedness of µ and

by the van Hove property of (An)n∈N. This may be seen by inspecting the proof of

[19, Lemma 9.2 (b)]. Hence existence and uniformity of the limit follow. �

4. Fourier analysis of weighted model sets

Let G,H be LCA groups and assume that L is a lattice in G × H . We will

consider measures on G supported on certain projected lattice subsets. The goal of

this section is to prove that their Fourier transform formula follows from the PSF

of the underlying lattice. A consequence is a certain averaging property of such

measures which is also known as the density formula.

4.1. Cut-and-project schemes and weighted model sets. We recall the defi-

nitions of a cut-and-project scheme and of a model set.

Definition 4.1 (Cut-and-project scheme). Let G,H be LCA groups, and let L
be a lattice in G × H, i.e., a discrete co-compact subgroup of G × H. We call

(G,H,L) a cut-and-project scheme if, with canonical projections πG ∶ G ×H → G,

πH ∶ G ×H →H,

(i) the restriction πG∣L of πG to L is one-to-one,

(ii) πH(L) is dense in H.

Remark 4.2. Note that condition (ii) may be assumed to hold without loss of

generality by passing from H to πH(L). Since πG∣L is one-to-one, πG∣L is a group

isomorphism between L and L = πG(L), and hence invertible in that case. We thus

get a map ⋆ ∶ L → H via the composition L
(πG∣L)

−1Ð→ L πHÐ→ L⋆, which is also called
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the star map. It is readily checked that L = {(x,x⋆) ∣x ∈ L}. We will not use the

star map in the sequel, since a number of our results hold without assumption (i).

Remark 4.3. Assume that (G,H,L) is a cut-and-project scheme. Then the anni-

hilator L0 ⊂ Ĝ×Ĥ of L is a lattice, the lattice dual to L. Let us write πĜ ∶ Ĝ×Ĥ → Ĝ,

πĤ ∶ Ĝ × Ĥ → Ĥ for the canonical projections and define L0 = πĜ(L0). Pontryagin
duality can be used to show that πĜ∣L0

is one-to-one/dense if and only if πH ∣L is

dense/one-to-one and πĤ ∣L0
is one-to-one/dense if and only if πG∣L is dense/one-

to-one, see e.g. [26, Sec. 5]. Hence (Ĝ, Ĥ,L0) is also a cut-and-project scheme, and

we have a star map ⋆ ∶ L0 → Ĥ as in (G,H,L). This dual cut-and-project scheme

describes the diffraction of a model set in (G,H,L).
Definition 4.4 (Model set). Let a cut-and-project scheme (G,H,L) be given and

assume that W ⊂ H is relatively compact and measurable. Then ⋏(W ) = πG(L ∩
G ×W ) is called a weak model set, compare [25, 16]. If W has non-empty interior,

then ⋏(W ) is called a model set. We say that ⋏(W ) is a regular model set if W

relatively compact, measurable, has non-empty interior and θH(BW ) = 0.
Remark 4.5 (Delone sets). Recall that D ⊂ G is uniformly discrete if there exists

a non-empty open set U ⊂ G such that x + U contains at most one point of D for

every x ∈ G. The set D ⊂ G is called relatively dense in G if there is a compact

set K ⊂ G such that D +K = G. If D ⊂ G is both uniformly discrete and relatively

dense, then D is called a Delone set. If W ⊂ H is relatively compact, then ⋏(W )
is uniformly discrete. This is a simple consequence of uniform discreteness of L. If
W ⊂ H has non-empty interior, then ⋏(W ) is relatively dense. For details of the

arguments see e.g. [26, Prop. 2.6 (i)].

Definition 4.6 (Weighted model set). Let (G,H,L) be cut-and-project scheme.

Any function h ∶ H → C is called a weight function on H. Assume that h is a

weight function such that

ωh ∶= ∑
(x,y)∈L

h(y)δx
is a measure on G. Then ωh ∈M(G) is called a weighted model set from (G,H,L).
Remark 4.7. We will be interested in weight functions h such that ωh is a trans-

lation bounded or transformable measure. Any weak model set ⋏(W ) leads to the

weighted model set ωh = δ⋏(W) with h = 1W . In fact ωh is then a translation

bounded measure since ⋏(W ) is uniformly discrete, but a non-periodic ωh may not

be transformable, see the example [15, p. 37].

We say that ωh ∈M(G) is uniformly translation bounded if for every compact

subset K ⊂ G we have

sup{∣ωt+h(s +K)∣ ∶ (s, t) ∈ G ×H} <∞.
An important class of weighted model sets arise from Riemann integrable functions

h ∶H → C.

Lemma 4.8. Let h ∶H → C be a bounded and compactly supported weight function.

Then ωh is a weighted model set. In fact ωh is a uniformly translation bounded

measure on G.
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Proof. Since h is bounded and of compact support, we find 0 ≤ c <∞ and compact

W ⊂ H such that ∣h∣ ≤ c ⋅ 1W . Fix arbitrary compact K ⊂ G and s ∈ G, t ∈ H . We

then have

∣ωt+h(s +K)∣ =
RRRRRRRRRRRR
∑

(x,y)∈L

(t + h)(y)1s+K(x)
RRRRRRRRRRRR
≤ ∑
(x,y)∈L

c ⋅ 1t+W (y)1s+K(x)
≤ c ⋅ sup

t∈G
♯(L ∩ ((t +W ) × (s +K))) <∞ .

By uniform discreteness of the lattice L, the term on the rhs is a finite constant

which does not depend on s ∈ G or t ∈ H . This shows that ωh is a uniformly

translation bounded measure and, in particular, a weighted model set. �

4.2. Generalised PSF for weighted model sets. The theorems of this subsec-

tion form the heart of this paper. We would like to remark that conditions (i), (ii)

of Definition 4.1 are not used in the proofs. We first consider weighted model sets

with positive definite weight functions.

Theorem 4.9 (PSF for weighted model sets I). Let (G,H,L) be a cut-and-project

scheme with dual cut-and-project scheme (Ĝ, Ĥ,L0). Then the following are equiv-

alent.

(i) The lattice Dirac comb δL ∈M∞(G ×H) is transformable and satisfies

the PSF

δ̂L = dens(L) ⋅ δL0
.

(ii) For every h ∈ PK(H), the weighted model set ωh ∈M∞(G) is strongly

translation bounded, transformable and satisfies, with ωqh
∈M∞(Ĝ), the

generalised PSF

ω̂h = dens(L) ⋅ ωqh
.

(iii) For every h ∈ K2(H), the weighted model set ωh ∈M∞(G) is strongly

translation bounded, transformable and satisfies, with ωqh
∈M∞(Ĝ), the

generalised PSF

ω̂h = dens(L) ⋅ ωqh
.

The following remark serves as a preparation for the proof of Theorem 4.9.

Remark 4.10 (test functions in product spaces). For given functions g ∶ G → C

and h ∶H → C, we will denote by g⊙h the function G×H → C given by (g⊙h)(s, t) =
g(s) ⋅h(t). It is easy to see that g ∈ Cc(G) and h ∈ Cc(H) imply g⊙h ∈ Cc(G×H),
and that g ∈K2(G) and h ∈K2(H) imply g⊙h ∈K2(G×H). Similarly, g ∈KL(G)
and h ∈ KL(H) imply g ⊙ h ∈ KL(G ×H), and g ∈ PK(G) and h ∈ PK(H) imply

g ⊙ h ∈ PK(G ×H) by [6, Lemma 3.2].

Proof of Theorem 4.9. “(i) ⇒ (ii)” Without loss of generality, fix any positive def-

inite h ∈ PK(H). Then ωh is a uniformly translation bounded measure since δL is

translation bounded, see Lemma 4.8. For arbitrary positive definite g ∈ PK(G) we
have g ⊙ h ∈ PK(G×H), by assumption and Theorem 3.1 we have qg ⊙ qh ∈ L1(δL0

)
and hence

0 ≤ ⟨δL, g ⊙ h⟩ = dens(L) ⋅ ⟨δL0
,qg ⊙ qh⟩ <∞
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By definition of ωh we have ⟨ωh, g⟩ = ⟨δL, g ⊙ h⟩. For the rhs of the above equation

we note that by definition of ωqh
we have

⟨δL0
,qg ⊙ qh⟩ = ∑

(χ,η)∈L0

qh(η) ⋅ qg(χ) = ⟨ωqh
,qg⟩.

Therefore we have for arbitrary g ∈ PK(G) the equality

(4.1) ⟨ωh, g⟩ = dens(L) ⋅ ⟨ωqh
,qg⟩.

Next we show that the linear functional ωqh
is a measure, which will follow from

positive definiteness of h. Note that qh ∈ C(Ĝ) is a positive function since h is

positive definite. Now consider any compact set K ⊂ Ĝ. Then there exists some

f ∈ Cc(G) such that ∣ qf ∣2 ≥ 1K , see e.g. [10, Lemma 3.4.5]. Hence for all φ ∈ Cc(Ĝ)
with supp(φ) ⊂K we have

∣⟨ωqh
, φ)⟩∣ = ∣ ∑

(χ,η)∈L0

φ(χ)qh(η)∣ ≤ ∑
(χ,η)∈L0

∣φ(χ)∣qh(η) ≤ ∑
(χ,η)∈L0

∥φ∥∞1K(χ)qh(η)

≤ ∑
(χ,η)∈L0

∥φ∥∞ ∣ qf ∣2 (χ)qh(η) = ⎛⎝ ∑
(χ,η)∈L0

∣ qf ∣2 (χ)qh(η)⎞⎠ ∥φ∥∞.

Here the term in brackets is finite as g ∶= f ∗ f̃ ∈ PK(G) and hence Eqn. (4.1)

holds. Defining CK ∶= ∑(χ,η)∈L0
∣ qf ∣2 (χ)qh(η), we have for every φ ∈ Cc(Ĝ) with

supp(φ) ⊂K the estimate

∣ωqh
(φ)∣ ≤ CK∥φ∥∞.

This shows that φ↦ ∑(χ,η)∈L0
φ(χ)qh(η) defines a measure on H , and it is straight-

forward to see that this measure is exactly ωqh
. This measure is positive by defini-

tion, and for any positive definite g ∈ PK(G) we have seen above that ⟨ωqh
,qg⟩ <∞.

This implies qg ∈ L1(ωqh
) for every g ∈ PK(G), which together with (4.1) gives that

ωh is transformable by Proposition 3.9. Translation boundedness of ωqh
follows from

Remark 3.4.

“(ii) ⇒ (iii)” Follows immediately from K2(G) ⊂ PK(G).
“(iii) ⇒ (i)” The claim δL ∈M∞(G×H) follows from strong translation bound-

edness of the measures ωh for h ∈ K2(H) by elementary estimates. Let g ∈ K2(G)
and h ∈K2(H). As before, from (iii) it is immediate that

(4.2) ⟨δL, g ⊙ h⟩ = dens(L) ⋅ ⟨δL0
,qg ⊙ qh⟩ .

By (iii) we have qg ∈ L1(ωqh
), which means qg ⊙ qh ∈ L1(δL0

). Hence the PSF holds

for all functions in K2(G)⊙K2(H) ∶= {g ⊙ h ∣g ∈K2(G), h ∈K2(H)}. We split the

proof for general functions from K2(G ×H) in four steps.

Step 1: We show for any g ∈ K2(G) and h ∈ K2(H) that (̂g ⊙ h) is convolvable

with δL0
and that the function dens(L) ⋅ (̂g ⊙ h)∗δL0

is the Fourier transform of the

finite measure (g⊙h) ⋅δL. In particular, this implies that (̂g ⊙ h)∗δL0
∈ CU(Ĝ×Ĥ).

Let (χ,ψ) ∈ Ĝ × Ĥ . As K2(G) and K2(H) are closed under multiplication

by characters, (χg) ⊙ (ψh) ∈ K2(G) ⊙K2(H). Therefore, by the above we have

|χg ⊙ |
ψh ∈ L1(δL0

) and ⟨δL, (χg)⊙ (ψh)⟩ = dens(L) ⋅ ⟨δL0
,|χg ⊙ |

ψh⟩. Therefore, we
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have

∫
G×H

ψ(s)χ(t)d[(g ⊙ h) ⋅ δL](s, t) = ⟨δL, (χg)⊙ (ψh)⟩
= dens(L) ⋅ ⟨δL0

,|χg ⊙ |
ψh⟩ = dens(L) ⋅ ⟨δL0

, Tχ,ψ(qg ⊙ qh)⟩
= dens(L) ⋅ δL0

∗ (ĝ ⊙ ĥ)(χ,ψ),
where the convolution makes sense as Tχ,ψ(qg⊙qh) = |χg⊙|

ψh ∈ L1(δL0
). This shows

that the function dens(L)⋅(̂g ⊙ h)∗δL0
is the Fourier transform of the finite measure

(g ⊙ h) ⋅ δL.
Step 2: For any g ∈ K2(G), h ∈ K2(H) and f ∈ K2(G × H) we have qf ∈

L1((̂g ⊙ h) ∗ δL0
) and
⟨δL, f ⋅ (g ⊙ h)⟩ = dens(L) ⋅ ⟨(̂g ⊙ h) ∗ δL0

⋅ θĜ×Ĥ , qf⟩.
This follows immediately from ⟨δL, f ⋅ (g ⊙ h)⟩ = ⟨(g ⊙ h) ⋅ δL, f⟩ and from the fact

that the Fourier transforms of a finite measure as a measure and as a finite measure

coincide [1, Thm. 2.2].

Step 3: We show that for any g ∈ K2(G), h ∈ K2(H) and f ∈ K2(G ×H), all
positive definite, we have (g ⊙ h) ∗ qf ∈ L1(δL0

) and
⟨(̂g ⊙ h) ∗ δL0

⋅ θĜ×Ĥ , qf⟩ = ⟨δL0
, qf ∗ (g ⊙ h)⟩.

By Step 2 we know that qf ∈ L1((̂g ⊙ h) ∗ δL0
), while by Step 1 we know that

(̂g ⊙ h) ∗ δL0
is given by the continuous function

(̂g ⊙ h) ∗ δL0
(x) = ∫

Ĝ×Ĥ
(̂g ⊙ h)(x − y)dδL0

(y).
Therefore we have by positive definiteness

0 ≤ ⟨(̂g ⊙ h)∗δL0
⋅θĜ×Ĥ , qf⟩ = ∫

Ĝ×Ĥ

qf(x)∫
Ĝ×Ĥ
(̂g ⊙ h)(x−y)dδL0

(y)dθĜ×Ĥ(x) <∞.
By positivity, we can use Tonelli’s theorem to exchange the order of integration.

This results in

⟨δL0
, qf ∗ (g ⊙ h)⟩ = ∫

Ĝ×Ĥ

qf(x) ∗ (g ⊙ h)(x)dδL0
(y)

= ∫
Ĝ×Ĥ
∫
Ĝ×Ĥ

qf(x)(̂g ⊙ h)(x − y)dθĜ×Ĥ(x)dδL0
(y)

= ∫
Ĝ×Ĥ

qf(x)∫
Ĝ×Ĥ
(̂g ⊙ h)(x − y)dδL0

(y)dθĜ×Ĥ(x) <∞,
which proves Step 3.

Step 4: We prove the PSF for general functions in K2(G×H). Consider without
loss of generality f ∈ K2(G ×H) positive definite. As f has compact support, we

can find compact sets K1 ⊂ G,K2 ⊂H such that supp(f) ⊂K1×K2. Next, pick two

functions g ∈ K2(G) and h ∈ K2(H) such that g ≡ 1 on K1 and h ≡ 1 on K2. For

example, one may pick a continuous function g1 ∈ Cc(G) with ∫G g1(t)dθG(t) = 1
and then some g2 ∈ Cc(G) which is 1 on K1 − supp(g1). Then g = g1 ∗ g2 ∈ K2(G)
and g ≡ 1 on K1. We choose h ∈ K2(H) in the same way. Then by construction

g ⊙ h ≡ 1 on supp(f), and we therefore have f ⋅ (g ⊙ h) = f . As both qf and ~g ⊙ h
are elements of L1(Ĝ× Ĥ)∩L2(Ĝ× Ĥ), by taking the inverse Fourier transform we

also get
qf ∗ (g ⊙ h) = qf.
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In order to apply Step 3, we use depolarisation to find ai ∈ C and gi ∈ K2(G), hi ∈
K2(H) positive definite such that g ⊙ h = ∑Ni=1 ai ⋅ (gi ⊙ hi) for some N . By Step 3

we have (gi ⊙ hi) ∗ qf ∈ L1(δL0
) and

⟨ ̂(gi ⊙ hi) ∗ δL0
⋅ θĜ×Ĥ , qf⟩ = ⟨δL0

, qf ∗ (gi ⊙ hi)⟩.
Therefore we have

qf = qf ∗ (g ⊙ h) = N

∑
i=1

ai ⋅ qf ∗ (gi ⊙ hi) ∈ L1(δL0
)

and

⟨δL, f⟩ = ⟨δL, f ⋅ (g ⊙ h)⟩ = dens(L) ⋅ ⟨(̂g ⊙ h) ∗ δL0
⋅ θĜ×Ĥ , qf⟩

= dens(L) ⋅ N∑
i=1

ai ⋅ ⟨ ̂(gi ⊙ hi) ∗ δL0
⋅ θĜ×Ĥ , qf⟩ = dens(L) ⋅ N∑

i=1

ai ⋅ ⟨δL0
, qf ∗ (gi ⊙ hi)⟩

= dens(L) ⋅ ⟨δL0
, qf ∗ (g ⋅ h)⟩ = dens(L) ⋅ ⟨δL0

, qf⟩.
This completes the proof. �

The weighted Dirac combs ωh in the previous theorem are in fact twice Fourier

transformable.

Theorem 4.11 (Double transformability for weighted model sets). Let (G,H,L)
be a cut-and-project scheme with dual cut-and-project scheme (Ĝ, Ĥ,L0). Then for

every h ∈ PK(H), the weighted model set ωh ∈M∞(G) is twice transformable, and

ωqh
∈M∞(Ĝ) satisfies the generalised PSF

ωqh

⋀= dens(L0) ⋅ ωh† .

Proof. Recalling Theorem 4.9, it remains to be shown that ωqh
is transformable

with transform dens(L0) ⋅ ωh† . Noting (ωh)† = ωh† and dens(L) ⋅ dens(L0) = 1,

by Theorem 3.10 it suffices to show that qg ∈ L1(ωh†) for all g ∈ K2(Ĝ). As h is

compactly supported, there exists some f ∈ Cc(H) such that ∣ qf ∣2 ≥ ∣h†∣. Let g ∈

K2(Ĝ). Then, as g⊙(f ∗ f̃) ∈K2(Ĝ×Ĥ), by the PSF for L0 we get qg⊙ ∣ qf ∣2 ∈ L1(δL)
and

0 ≤ dens(L0) ⋅ ⟨δL,qg ⊙ ∣ qf ∣2⟩ = ⟨δL0
, g ⊙ (f ∗ f̃)⟩ <∞.

Using ∣ qf ∣2 ≥ ∣h†∣ we thus get ∑(x,y)∈L ∣qg(x)∣ ∣h†(y)∣ < ∞, which means qg ∈ L1(ωh†).
�

We have the following result for the test function space KL(G). With respect

to transformability, it emphasises the condition that ωqh
needs to be a measure.

Theorem 4.12 (PSF for weighted model sets II). Let (G,H,L) be a cut-and-project

scheme and let h ∈KL(G). Then ωh ∈M∞(G), and the following holds.

(i) For all g ∈ KL(G) the sum ∑(χ,η)∈L0
qg(χ)qh(η) =∶ ⟨ωqh

,qg⟩ is absolutely

convergent and we have

⟨ωh, g⟩ = dens(L) ⋅ ⟨ωqh
,qg⟩.

(ii) The measure ωh is transformable if and only if ωqh
is a measure. In this

case

ω̂h = dens(L) ⋅ ωqh
.

�
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Proof. The claim ωh ∈M∞(G) for h ∈ KL(G) is Lemma 4.8. Part (i) is proved

by rethinking the arguments in the proof of Theorem 4.9. Here we use that g ⋅ h ∈
KL(G×H) by Remark 4.10, and hence we can apply the lattice PSF Theorem 3.1.

As to part “(ii) ⇒”, consider for h ∈KL(H) and g1, g2 ∈ Cc(G) the equations

⟨ωh, g1 ∗g2⟩ = ⟨δL, (g1 ∗g2)⊙h⟩ = dens(L) ⋅ ⟨δL0
, ( qg1 ⋅ qg2)⊙qh⟩ = dens(L) ⋅ ⟨ωqh

,qg1 ⋅qg2⟩.
Here the second equation uses that (g1 ∗ g2) ⊙ h ∈ KL(G × H), such that the

PSF for the lattice L can be applied. By denseness of Ĉc(G) in C0(Ĝ) and by the

Riesz representation theorem for C0(Ĝ), we have that the bounded linear functional

qg1dωqh
is a finite Radon measure. This can be used to define a linear functional µ̂

by

µ̂(ϕ) = ∫
Ĝ

ϕ

ĝ1
qg1dωqh

,

where ϕ ∈ Cc(Ĝ) and g1 ∈ Cc(G) is chosen such that qg1 is positive on the support

of ϕ. It is easy to see that µ̂ is well-defined and a bounded linear functional. Hence

µ̂ is a measure, which concides with ωqh
, as is seen by direct calculation.

For “(ii) ⇐”, fix h ∈KL(H) and consider for arbitrary g ∈K2(G) the equation

⟨ωh, g⟩ = ⟨δL, g ⊙ h⟩ = dens(L) ⋅ ⟨δL0
,qg ⊙ qh⟩ = dens(L) ⋅ ⟨ωqh

,qg⟩.
Here the second equation uses g⊙h ∈KL(G×H), such that the PSF for the lattice

L can be applied. In particular qg ∈ L1(ωqh
) since qg ⊙ qh ∈ L1(δL0

). Hence ωh is

transformable with ω̂h = dens(L) ⋅ ωqh
. �

4.3. Density formula for weighted model sets. A consequence of the lattice

PSF is a certain averaging property which is known as the density formula for

regular model sets. See [16, Sec. 3] for a discussion of its history. Note that

condition (i) of Definition 4.1 is not used in the following proofs.

Proposition 4.13 (Density formula for weight functions in PK(H)). Let (G,H,L)
be a cut-and-project scheme with σ-compact G, and let (An)n∈N be any van Hove

sequence in G. Then for all h ∈ PK(H) and for all t ∈ G we have

lim
n→∞

ωh(t +An)
θG(An) = dens(L) ⋅ ∫H hdθH

The convergence is uniform in t ∈ G.

Proof. This follows from the generalised PSF Theorem 4.9. As ωqh
is a measure, we

have ωqh
({0}) = qh(0). Here we used that πĜ∣L0

is one-to-one, which follows from

denseness of πH(L) in H by Pontryagin duality. Moreover, as ωh is a translation

bounded measure by Lemma 4.8 and transformable, we can apply Proposition 3.12

to obtain

ω̂h({0}) = lim
n→∞

ωh(t +An)
θG(An)

uniformly in t ∈ G. The claim follows now from Theorem 4.9. �

The range of the density formula can be extended to Riemann integrable weight

functions h ∶ H → C by a standard approximation argument, see e.g. [4]. For the

convenience of the reader, we repeat the short argument.
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Theorem 4.14 (Density formula for Riemann integrable weight functions). Let

(G,H,L) be a cut-and-project scheme with σ-compact G. If h ∶H → C is Riemann

integrable, then for every van Hove sequence (An)n∈N in G the density formula

holds, i.e., for every t ∈ G we have

lim
n→∞

ωh(t +An)
θG(An) = dens(L) ⋅ ∫H hdθH .

The convergence is uniform in t ∈ G.

Proof. We assume without loss of generality that h is real valued. Let ε > 0 and

define c = dens(L) > 0. Since h is Riemann integrable, by the density of K2(H)
in Cc(H), there exists two functions g1, g2 ∈ K2(G) such that g1 ≤ h ≤ g2 and

∫ (g2 − g1)dθH ≤ ε
2c
. By the density formula Theorem 4.13 there exists an N such

that for all n ≥N , all t ∈ G and i ∈ {1,2} we have

∣ωgi(t +An)
θG(An) − c∫ gi dθH ∣ ≤ ε

2
.

Thus, as ωg1 ≤ ωh ≤ ωg2 , for all n ≥ N and all t ∈ G we have

c∫ hdθH − ωh(t +An)
θG(An) ≤

ε

2
+ c∫ g2 dθH − ωg1(t +An)

θG(An) ≤ ε

and similarly

c∫ hdθH − ωh(t +An)
θG(An) ≥ −

ε

2
+ c∫ g1 dθH − ωg2(t +An)

θG(An) ≥ −ε
Hence the claim of the theorem follows. �

5. Diffraction of weighted model sets

5.1. Autocorrelation of weighted model sets. The following result is well-

known, see e.g. [4]. For the convenience of the reader, we revisit its proof and note

that condition (i) of Definition 4.1 does not enter in the arguments.

Proposition 5.1. Let (G,H,L) be a cut-and-project scheme with σ-compact G.

Let h ∶ H → C be Riemann integrable. Then the weighted model set ωh ∈M∞(G)
has a unique autocorrelation measure γ = ωh ⊛ ω̃h ∈M∞(G) which is given by

γ = dens(L) ⋅ ωh∗h̃
Proof. Fix any van Hove sequence (An)n∈N in G. According to Section 2, the auto-

correlation of ωh ∈M∞(G) is defined as the vague limit of the finite autocorrelation

measures γn given by

γn =
1

θG(An) ωh∣An
∗ ω̃h∣An

=
1

θG(An) ωh∣An
∗ ωh̃∣−An

= ∑
(z,z′)∈L

η′n(z′)δz,
where ∣An

denotes restriction to An, and where η′n(z′) is given by

η′n(z′) = 1

θG(An) ∑
(x,x′)∈L∩(An∩(z+An)×H)

h(x′)h(x′ − z′).
For fixed n, the above sum is finite since ωh is a measure and h is bounded. Also

noteRRRRRRRRRRRR
∑

(x,x′)∈L∩(An∆(z+An))×H

h(x′)h(x′ − z′)
RRRRRRRRRRRR
≤ ∥h∥∞ ⋅ ∣ωh∣(B{z}An) = o(θG(An))
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as n →∞ since ωh is translation bounded and An is a van Hove sequence, see [19,

Lemma 9.2 (b)]. This shows that vaguely γn = ∑(z,z′)∈L ηn(z′)δz + o(1) as n → ∞
where

ηn(z′) = 1

θG(An) ∑
(x,x′)∈L∩An×H

h(x′)h(x′ − z′).
Since the function y ↦ h(y)h(y − z′) is Riemann integrable on H , we can apply the

density formula Theorem 4.14 and obtain

η(z′) = lim
n→∞

ηn(z′) = dens(L) ⋅ ∫
H
h(y)h(y − z′)dθH(y)

= dens(L) ⋅ (h ∗ h̃)(z′).
Since ωh∗h̃ is uniformly discrete, this implies that γn converges vaguely to γ, and

the claim follows. �

5.2. Pure point diffraction in regular model sets. The following theorem is

our main result. The implication “(i) ⇒ (iii)” is the well-known diffraction formula

as in [15, 33, 4].

Theorem 5.2 (Pure point diffraction of weighted model sets). Let (G,H,L) be a

cut-and-project scheme with σ-compact G and denote by (Ĝ, Ĥ,L0) its dual. Then

the following are equivalent.

(i) The lattice Dirac comb δL ∈M∞(G ×H) is transformable and satisfies

the PSF

δ̂L = dens(L) ⋅ δL0
.

(ii) The lattice Dirac comb δL ∈M∞(G×H) has autocorrelation γ ∈M∞(G×
H) and diffraction γ̂ ∈M∞(Ĝ × Ĥ) given by

γ = dens(L) ⋅ δL, γ̂ = dens(L)2 ⋅ δL0
.

(iii) For every Riemann integrable function h ∶ H → C, the weighted model

set ωh ∈M∞(G) is uniformly translation bounded, with autocorrelation

γ ∈M∞(G) and diffraction γ̂ ∈M∞(Ĝ) given by

γ = dens(L) ⋅ ωh∗h̃, γ̂ = dens(L)2 ⋅ ω∣qh∣2 .
In particular, ωh has pure point diffraction for every Riemann integrable function

h ∶H → C.

Remark 5.3. The above theorem applies to regular model sets, as for any relatively

compact measurable W ⊂ H such that θH(BW ) = 0, its characteristic function

h = 1W ∶H → R is Riemann integrable.

Proof of Theorem 5.2. “(i) ⇒ (ii)” rests on an explicit computation of γ that can

be inferred from Proposition 5.1. The reverse implication “(ii) ⇒ (i)” is trivial.

“(i) ⇒ (iii)” Uniform translation boundedness of ωh is Lemma 4.8. The explicit

form of the autocorrelation γ is Proposition 5.1, which relies on Theorem 4.12 or

Theorem 4.9 (i) ⇒ (ii). The statement about γ̂ now follows from Theorem 4.9 (i)

⇒ (iii). The implication “(iii) ⇒ (i)” is Theorem 4.9 (iii) ⇒ (i) applied to the

autocorrelation measure. �
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Remark 5.4 (Modified Wiener diagram). For any weighted model set ωh with

weight function h ∈ PK(H) the modified Wiener diagram

ωh
⊛ÐÐÐÐ→ dens(L) ⋅ ωh∗h̃

F
×××Ö

×××ÖF
dens(L) ⋅ ωqh

∣⋅∣2ÐÐÐÐ→ dens(L)2 ⋅ ω∣qh∣2
commutes, as ωqh

is a measure in that case by Theorem 4.9. This includes lattice

Dirac combs, as one may choose H trivial in that case. The diagram may no longer

commute for a general Riemann integrable weight function h, as ωqh
might not be

a measure in that case, and as ωh might not be a transformable measure. However

the upper right path is still well defined in that case, such that the diffraction of

ωh is a pure point measure and may be computed by “squaring the Fourier-Bohr

coefficients”.

5.3. Pure point diffraction in weak model sets. By definition, the window

W ⊂H of a weak model set is relatively compact and measurable. Hence ωh where

h = 1W is a weighted model set in that case by Lemma 4.8. But ωh may not be pure

point diffractive. On the other hand h ∗ h̃ ∈ PK(G) by Lemma 3.7, which means

that the measure ωh∗h̃ is transformable by Theorem 5.2. Thus the question arises

which weighted model sets ωh have an autocorrelation given by dens(L) ⋅ωh∗h̃. As
argued by Moody [25], this property is typical when one considers the ensemble

of weak model sets with all shifts of a given window together with the uniform

measure on this ensemble [25, Theorem 1]. For compact windows, it is related to

maximal density of the weak model set [16, Prop. 3.4]. The following result extends

[25, Cor. 1].

Theorem 5.5. [3] Let (G,H,L) be a cut-and-project scheme with σ-compact G

and let ωh be the Dirac comb of a weak model set, i.e., h = 1W for some relatively

compact measurable W ⊂H. Assume that there exists a van Hove sequence (An)n∈N
in G such that ωh has maximal density with respect to (An)n, i.e.,

lim
n→∞

1

θG(An)ωh(An) = dens(L) ⋅ θH(W ).
Then, with respect to the given van Hove sequence (An)n, the weak model set ωh
has autocorrelation γ and diffraction γ̂ given by

γ = dens(L) ⋅ ωg∗g̃, γ̂ = dens(L)2 ⋅ ω∣qg∣2 ,
where g = 1

W
. In particular, ωh has pure point diffraction. �

Remark 5.6. The above result reduces to the diffraction formula for regular model

sets, since any regular model set has maximal density [16, Prop. 3.4]. For a model

set with window satisfying θH(BW ) > 0, its diffraction spectrum may contain a

non-trivial continuous component. In that case lack of maximal density may be

interpreted as introducing some randomness into the system. Note however that

the maximal density condition is not necessary for pure point diffraction. For

example one may take a window with empty interior and consider a shift of the

window which has empty intersection with the projected lattice. The existence of

such a shift is seen by a Baire argument, compare e.g. [5] or [16, Prop. 2.12]. This

will result in an empty weak model set, which is pure point diffractive.
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5.4. Bragg peaks in Meyer sets. Next, let Λ ⊂ G be a Meyer set [35, Def. 7.2],

i.e., Λ and Λ − Λ − Λ are both uniformly discrete and relatively dense. Since any

autocorrelation γ of Λ is positive definite, it is weakly almost periodic [27, Sec. 11]

and admits an Eberlein decomposition [17, Eqn. (8.28)]. Let γS denote the strongly

almost periodic part of γ. Then (γ̂)pp = γ̂S , see [27, Sec. 10]. Since Λ is a Meyer set,

there exists a cut-and-project scheme (G,H,L) and a positive and positive definite

h ∈ Cc(H) such that γS = ωh, see [35, Prop. 12.1]. Since h is positive and positive

definite, ĥ is a finite measure and thus ĥ ∈ L1(Ĥ). Hence h ∈ PK(H), and thus

Theorem 4.12 yields an alternative proof of the following result.

Theorem 5.7. [35, Thm. 12.2] Let Λ ⊂ G be a Meyer set with autocorrelation γ,

with σ-compact G. Then there exists a cut-and-project scheme (G,H,L) such that

γS = ωh, (γ̂)pp = ωqh

for some h ∈ PK(H). �

Remark 5.8. Hence the formula for the pure point part of the diffraction of an

arbitrary Meyer set Λ is a consequence of the PSF for some cut-and-project scheme

in which Λ is a subset of a model set. We note that the above arguments can also

be applied to the pure point part of the diffraction of an arbitrary weighted Dirac

comb with Meyer set support, which reproves [35, Prop. 12.1] using the PSF.

5.5. Double transformability for measures with Meyer set support. Fi-

nally, let Λ ⊂ G be a Meyer set and let µ be a measure supported inside Λ. Note that

µ does not need to be pure point diffractive. We prove that if µ is transformable,

then it is automatically twice transformable. This extends Theorem 4.11.

Theorem 5.9. Let G be a σ-compact LCA group, let Λ ⊂ G be a Meyer set and

let µ ∈M∞(G) be supported inside Λ. If µ is transformable, then µ̂ is also trans-

formable, and we have ̂̂µ = µ†.

Proof. We check the integrability condition in Theorem 3.10. Since Λ is a Meyer

set, there exists a cut-and-project scheme (G,H,L) and a window W such that

Λ ⊂ ⋏(W ) by [35, Thm. 1.8]. Also, as µ is translation bounded, there exists some

finite positive constant c such that ∣µ({x})∣ ≤ c for all x ∈ Λ. Next, we pick some

h ∈K2(H) such that h ≥ c⋅1W . Then ∣µ∣ ≤ c⋅ωh. Now, by Theorem 4.11, the measure

ωh is twice transformable. Therefore, for all g ∈K2(Ĝ) we have qg ∈ L1(ωh†). Hence,
as ∣µ†∣ ≤ c ⋅ ωh† we get qg ∈ L1(µ†). �

Remark 5.10. Our validation of the integrability condition in Theorem 3.10 relies

on the lattice PSF: we embed the Meyer set into a regular model set coming from a

cut-and-project scheme (G,H,L), and then the integrability condition follows from

the PSF applied to the dual lattice L0.
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